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ABSTRACT

A post-cure study was made of a vinyl ester laminate
fabricated by vacuum assisted resin transfer molding.
One day after fabrication the glass transition
temperature (Tg) was about 154 F and the flexural
strength was 52 ksi, which are low values. With time
at room temperature, however, both strength and Tg
increased to acceptable levels. Room temperature post-
curing increased the Tg to about 200 F and the flexural
strength to 78 ksi. In addition it was found that the
resin cures very rapidly at elevated temperature, which
allows the resin Tg to remain above the temperature of
the environment for most heating rates. Based on
increases in strength and Tg due to post-curing
reactions at ambient temperature and the rapid increase
in Tg with the temperature of the environment, we
concluded that post-curing of structures fabricated by
VARTM is not necessary.

ADMINISTRATIVE INFORMATION

The work described herein was conducted under the Organic
Composites Ship Structures Project (RH21S12) as part of a
Congressional Special Interest Initiative, Navy Program Element
0621221N. The project was sponsored and managed by the Office of
Naval Research, ONR 334, and executed by the Carderock Division,
Naval Surface Warfare Center under work unit 1-6600-042-40.

INTRODUCTION

Laminating resins used in marine construction are as a rule
not fully cured. Although these materials are called "room
temperature curing" or "cold curing" resins, the reaction
exotherm increases the temperature well above ambient, which
advances the cure state. Information on the role of resin
exotherm on the degree of cure is not available. The purpose of
this study was to determine if composite structures for Naval
applications should be post-cured, particularly those made by
vacuum assisted resin transfer molding (VARTM), which are
characterized by low resin contents and therefore low exotherm
temperatures.

The degree of cure cannot be directly measured, but it can be
indirectly assessed using differential scanning calorimetry
(DSC). During a DSC scan, any initially uncured component cures
during the test, and the DSC detects the heat of reaction of this
uncured component. To determine the percent cure of a given
sample, the heat of reaction (per unit weight) of the specimen is
assumed to be proportional to the fraction of uncured resin.

That is, the percent cure of a specimen = (1-aH,/aH,) X 100,
where aH, is the heat of reaction of the specimen and aHg is the
heat of reaction measured during full cure. This method works
well for neat resin samples, but its usefulness for laminates
depends on the accuracy of measuring the resin content of each
specimen tested. This is difficult given that a DSC uses roughly




10 mg samples.

The degree of cure is related to the crosslink density. There
is a maximum possible crosslink density that a given thermoset
resin could achieve given enough time at temperature, and as
mentioned, the typical resin in marine laminates operates at less
than 100 percent reacted (1). There are many resin properties
which depend on the crosslink density, so there are many indirect
methods which can be used to assess the degree of cure once the
methods are calibrated with data established by DSC measurements.

In a study at Dow Chemical Co. (2), Barcol hardness, acetone
weight gain, residual styrene content, heat distortion
temperature (HDT), and glass transition temperature measured with
Dynamic Mechanical Analysis (DMA) were all compared with DSC
data. All five methods were acceptable alternatives to DSC, with
the exception of Barcol hardness, which was insensitive to degree
of cure above 85%. The Dow study reported that the glass
transition temperature (Tg) of the vinyl ester evaluated
(Derakane 411-45) increased substantially with degree of cure.
The data show that neat resin castings were 73.5 % cured after 1
day at room temperature and had a Tg of only 112 °F. Tg was a
essentially proportional to the degree of cure, eventually
reaching about 225 °F at 100 % cure.

In our study, flexural strength and glass transition
temperature were used to characterize the VARTM laminate. The
laminate was composed of 6 plys of 24 oz woven roving (0C24P-
107B) and a brominated vinyl ester (Dow Derakane 510a). It was
cured with 1.25% MEKP and 0.3% CoNap. The weight percent glass
was measured at 71.3 and the void content was negligible.

EVALUATION PROCEDURE

The flexural strength and DMA scans of a laminate made by
VARTM were measured as a function of time at room temperature,
and also after various post-cure conditions.

The flexural testing was done in the warp direction using ASTM
D790 (3-point bend) at a span-to-depth ratio of about 32:1. The
thermal analysis was done using a Polymer Labs MK II DMTA
(Dynamic Mechanical Thermal Analysis) in the single cantilever
beam mode at 10 Hz. The data was taken at heating rates of 5
F/min (3 C/min) and 18 F/min (10 C/min).

FLEXURAL STRENGTH RESULTS

The flexural strength as a function of post-cure conditions is
given in Table 1, and plotted in Figure 1. The raw data is
provided in the Appendix. It is clear from inspection of the
flexural strength data that the resin continued to cure slowly
for many months while held at ambient temperature. This room
temperature post-cure allowed the laminate to develop a flexural
strength comparable to that attained with at 140 F post-cure.

It appears from this data that an optimum post-cure
temperature exists, which for this resin is about 160 F. The
post-cures at 180 F and 200 F resulted in a 20% decrease in
strength. Since these temperatures are well below those required
for resin degradation, the most likely cause for the strength




loss is a decrease in resin failure strain to below the 4%
minimum value required for full laminate mechanical property
developnent (3).

Table 1. Flexural strength as a function of post-cure

conditions.
. Strength (ksi) Post-Cure Temperature; Time
52.1 Ambient; 24 hours
63.8 Ambient; 1 week Accesion For
73.1 Ambient; 1 month
70.2 Ambient; 3 months g’ﬂg ?:g&' g
77.8 Ambient; 6 months Unannounced =
78.4 140 F; 8 hours Justificati
89.8 160 F; 4 hours ustification
69.6 180 F; 4 hours
72.1 200 F; 4 hours By
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Figure 1. Flexural strength of WR/510A as a function of
post-cure conditions.




THERMAL ANALYSIS RESULTS

The DMA scans taken in this study are given in Figures 2-10.
Figure 2 shows the modulus (log E') as a function of laminate
temperature after 24 hours at room temperature, Figure 3 after 1
week, Figure 4 after 1 month, Figure 5 after 3 months, and Figure
6 after 1 year. Figure 7 is the modulus-temperature plot for the
sample post-cured at 140 °F, Figure 8 is the behavior after a 160
°F post-cure, Figure 9 after 180 °F, and Figure 10 after a 200 °F
post-cure.

Figures 2-5 were taken at a heating rate of 5 °F/min (3 °C/
min). We learned in this study that this heating rate is too
slow. It gives the material enough time at temperature to post-
cure during the test, and the DMTA then measures the Tg of the
post-cured material. Although it appears from the data that the
resin Tg is 250 °F (120 °C) in Figures 2-5, this is the post-
cured value.

Inspection of Figures 2-5 show a transition, indicated by a
‘drop in modulus, at temperatures well below 250 °F. For example,
in Figure 2 the transition starts about 154 °F (68 °C). We
believe that this transition is the actual Tg of the material.

Figures 6-10 show the DMA data measured with a heating rate of
18 °F/min (10 °C/min). Interpretation of the data is
straightforward because the material cannot cure fast enough at
this rate to keep its Tg above the test temperature. The value
of Tg is taken at the knee in the modulus-temperature plots. The
knee is located by the intersection of lines extrapolated from
linear portions of the curve, as shown on each plot.

We have determined the value of Tg from the DMA plots and
plotted these values in Figure 11. For comparison we show the
DMA data taken in the Dow study in Figure 12.

The most significant discovery is that the Tg increases almost
50 °F after a year at room temperature. As mentioned, flexural
strength also increases with room temperature post-curing. The
data in Figure 11 supports and provides an explanation for the
mechanical property data.

It is interesting to compare the data taken by Dow on Derakane
411 with that generated in this study on Derakane 510A. 1In both
cases, the difference between newly fabricated Tg and maximum Tg
was about 100 °F. Also, the initial increase in the degree of
cure did not improve the Tg in either study.

DISCUSSION

The data taken in this study indicate that post-cure
requirements should not, in general, be imposed upon laminates
for use in Naval structures, including those made with VARTM.
Three facts have allowed us to make this statement: 1) the
laminate strength increases to an acceptable value with time at
ambient conditions, 2) the resin Tg increases to an acceptable
value with time at ambient conditions, and 3) the resin Tg
increases rapidly with the temperature of the environment.

The main concern with the cure state of resins is the low Tg
associated with low crosslink densities. Although the cure state
can advance rapidly at elevated temperature, failure could result



from a temperature rise too rapid for the material to respond.
our data indicates that this rate of temperature increase is
between about 5 °F/min and 20 °F/min for Derakane 510A, that is,
at rates below 5 °F/min the post-curing reactions will keep the
Tg above the temperature of the environment, but heating rates
higher than 20 °F/min could allow the temperature to exceed Tg.
We feel that post-cure requirements should be imposed only if
rapid rates of temperature increase are expected.

SUMMARY

A vinyl ester laminate fabricated by VARTM was evaluated to
~determine if these low resin content materials should be post-
cured due to a reduction in resin exotherm. Given the results
listed below, we concluded that post-curing is not necessary
unless a rapid temperature increase is expected soon after
fabrication.

1. The mechanical and thermal properties of the laminate were
initially relatively low due to low percent cure. :

2. Room temperature post-cure increased the flexural strength
from its initial value of 52 ksi to 78 ksi after 6 months in
ambient conditions, a value comparable to that attained with a
140 °F post-cure.

3. Room temperature post-cure increased the Tg from its initial
value of 154 °F to about 200 °F after a year in ambient
conditions.

4. The degree of cure increased rapidly with temperature. When
heated at 5 °F/min the resin Tg remained above the temperature of
the environment. However, when heated at 18 °F/min the
temperature exceeded Tg.

5. The optimum post-cure temperature for Derakane 510A is 160 °F.
Higher temperature post-cures result in a loss in strength,
probably due to a reduction in resin failure strain.
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Figure 2. Modulus-temperature behavior of WR/510A 24 hours after
fabrication.




WR/510A - 1 week RT
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Figure 3. Modulus-temperature behavior of WR/510A 1 week after
fabrication.




WR/510A - 1 month RT
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Figure 4. Modulus-temperature behavior of WR/510A 1 month after

fabrication.




WR/510A - 3 months RT
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Figure 5. Modulus-temperature behavior of WR/S510A 3 months after

fabrication.




WR/510A - 1 year RT
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Figure 6. Modulus-temperature behavior of WR/510A 1 year after
fabrication.
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WR/510A - 140F Post Cured
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Figure 7. Modulus-temperature behavior of WR/510A after a 140 F
post-cure.

11




WR/510A - 160F Post Cured
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Figure 8. Modulus-temperature behavior of WR/510A after a 160 F

post-cure.
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WR/510A - 180F Post Cured
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Figure 9. Modulus-temperature behavior of WR/510A after a 180 F
post-cure.
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WR/510A - 200F Post Cured
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Figure 10. Modulus-temperature behavior of WR/510A after a 200 F
post-cure.

14



200

150

100

60

1DAY

WK 1MNTH3MNTH 1YR
POST-CURE CONDITIONS

140F

160F

180F 200F

Figure 11. Tg of WR/510 A as a function of post-cure conditions.
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Figure 12. Tg as function of percent cure for Derakane 411
(data taken from reference 2).




APPENDIX. Raw Flexural Strength Data

Post-cure Temp;Time thickness width load strength
(inches) (inches) (1bs) (ksi)

Ambient; 24 hours .138 .505 72 50.5
.135 .504 80 58.8
.140 .507 73 49.6
.138 .505 72 50.5
.140 .503 75 51.3
MEAN 52.1
STD DEV 3.8
Ambient; 1 week .134 .503 83 62.0
.135 .503 82 60.4
.136 .507 97 69.8
.141 .508 90 63.1
MEAN 63.8
STD DEV 4.1
Ambient; 1 month .141 .504 102 68.7
.136 .499 92 65.0
.138 .502 109 83.9
.136 .503 103 74.7
MEAN 73.1
STD DEV 8.2
Ambient; 3 months .136 .502 108 78.5
.140 .503 105 71.9
.135 .503 84 61.9
.139 .504 99 68.6
MEAN 70.2
STD DEV 6.9
Ambient; 6 months .135 .503 122 89.8
.144 .507 85 54.5
.135 .502 107 78.9
.132 .505 115 88.2
MEAN 77.8
STD DEV 16.3
140 °F; 8 hours .138 .501 113 79.9
.134 .501 102 76.5
.139 .501 114 79.5
.139 .503 112 77.8
MEAN 78.4
STD DEV 1.6
160 °F; 4 hours .138 .505 135 94.7
.138 .503 131 92.3
.140 .504 120 82.0
.135 .505 123 90.2
MEAN 89.8
STD DEV 5.5
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APPENDIX. Raw Flexural Strength Data, Cont.

Post-cure Temp;Time thickness width . load strength
(inches) (inches) (1bs) (ksi)
180 °F; 4 hours .135 .504 91 66.9
.134 .502 99 74.1
.134 .500 90 67.7
.139 .502 100 69.6
MEAN 69.6
STD DEV 3.2
200 °F; 4 hours .140 .498 109 75.3
.135 .505 89 65.3
.137 .500 106 76.2
.140 .499 104 71.8
MEAN 72.1
STD DEV 4.9
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